Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 10(4): eadg1679, 2024 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-38277461

RESUMO

Metabotropic glutamate receptor 2 (mGlu2) attracts particular attention as a possible target for a new class of antipsychotics. However, the signaling pathways transducing the effects of mGlu2 in the brain remain poorly characterized. Here, we addressed this issue by identifying native mGlu2 interactome in mouse prefrontal cortex. Nanobody-based affinity purification and mass spectrometry identified 149 candidate mGlu2 partners, including the neurotrophin receptor TrkB. The later interaction was confirmed both in cultured cells and prefrontal cortex. mGlu2 activation triggers phosphorylation of TrkB on Tyr816 in primary cortical neurons and prefrontal cortex. Reciprocally, TrkB stimulation enhances mGlu2-operated Gi/o protein activation. Furthermore, TrkB inhibition prevents the rescue of behavioral deficits by glutamatergic antipsychotics in phencyclidine-treated mice. Collectively, these results reveal a cross-talk between TrkB and mGlu2, which is key to the behavioral response to glutamatergic antipsychotics.


Assuntos
Antipsicóticos , Camundongos , Animais , Antipsicóticos/farmacologia , Receptor trkB/metabolismo , Córtex Pré-Frontal/metabolismo , Células Cultivadas , Neurônios/metabolismo
2.
Nucleic Acids Res ; 51(7): 3357-3374, 2023 04 24.
Artigo em Inglês | MEDLINE | ID: mdl-36869663

RESUMO

The conserved H/ACA RNPs consist of one H/ACA RNA and 4 core proteins: dyskerin, NHP2, NOP10, and GAR1. Its assembly requires several assembly factors. A pre-particle containing the nascent RNAs, dyskerin, NOP10, NHP2 and NAF1 is assembled co-transcriptionally. NAF1 is later replaced by GAR1 to form mature RNPs. In this study, we explore the mechanism leading to the assembly of H/ACA RNPs. We performed the analysis of GAR1, NHP2, SHQ1 and NAF1 proteomes by quantitative SILAC proteomic, and analyzed purified complexes containing these proteins by sedimentation on glycerol gradient. We propose the formation of several distinct intermediate complexes during H/ACA RNP assembly, notably the formation of early protein-only complexes containing at least the core proteins dyskerin, NOP10, and NHP2, and the assembly factors SHQ1 and NAF1. We also identified new proteins associated with GAR1, NHP2, SHQ1 and NAF1, which can be important for box H/ACA assembly or function. Moreover, even though GAR1 is regulated by methylations, the nature, localization, and functions of these methylations are not well known. Our MS analysis of purified GAR1 revealed new sites of arginine methylations. Additionally, we showed that unmethylated GAR1 is correctly incorporated in H/ACA RNPs, even though with less efficiency than methylated ones.


Assuntos
Proteômica , Ribonucleoproteínas , Ribonucleoproteínas/genética , Ribonucleoproteínas Nucleolares Pequenas/genética , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas de Ligação a RNA , RNA/genética
3.
J Mol Biol ; 434(19): 167760, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-35901867

RESUMO

DPCD is a protein that may play a role in cilia formation and whose absence leads to primary ciliary dyskinesia (PCD), a rare disease caused by impairment of ciliated cells. Except for high-throughput studies that identified DPCD as a possible RUVBL1 (R1) and RUVBL2 (R2) partner, no in-depth cellular, biochemical, and structural investigation involving DPCD have been reported so far. R1 and R2 proteins are ubiquitous highly conserved AAA + family ATPases that assemble and mature a plethora of macromolecular complexes and are pivotal in numerous cellular processes, especially by guaranteeing a co-chaperoning function within R2TP or R2TP-like machineries. In the present study, we identified DPCD as a new R1R2 partner in vivo. We show that DPCD interacts directly with R1 and R2 in vitro and in cells. We characterized the physico-chemical properties of DPCD in solution and built a 3D model of DPCD. In addition, we used a variety of orthogonal biophysical techniques including small-angle X-ray scattering, structural mass spectrometry and electron microscopy to assess the molecular determinants of DPCD interaction with R1R2. Interestingly, DPCD disrupts the dodecameric state of R1R2 complex upon binding and this interaction occurs mainly via the DII domains of R1R2.


Assuntos
ATPases Associadas a Diversas Atividades Celulares , Proteínas de Transporte , DNA Helicases , Complexos Multiproteicos , Proteínas , ATPases Associadas a Diversas Atividades Celulares/química , Proteínas de Transporte/química , DNA Helicases/química , Humanos , Complexos Multiproteicos/química , Proteínas/química
4.
Fac Rev ; 10: 52, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34195691

RESUMO

Serotonin (5-HT) appeared billions of years before 5-HT receptors and synapses. It is thus not surprising that 5-HT can control biological processes independently of its receptors. One example is serotonylation, which consists of covalent binding of 5-HT to the primary amine of glutamine. Over the past 20 years, serotonylation has been involved in the regulation of many signaling mechanisms. One of the most striking examples is the recent evidence that serotonylation of histone H3 constitutes an epigenetic mark. However, the pathophysiological role of histone H3 serotonylation remains to be discovered. All but one of the 5-HT receptors are G-protein-coupled receptors (GPCRs). The signaling pathways they control are finely tuned, and new, unexpected regulatory mechanisms are being uncovered continuously. Some 5-HT receptors (5-HT2C, 5-HT4, 5-HT6, and 5-HT7) signal through mechanisms that require neither G-proteins nor ß-arrestins, the two classical and almost universal GPCR signal transducers. 5-HT6 receptors are constitutively activated via their association with intracellular GPCR-interacting proteins (GIPs), including neurofibromin 1, cyclin-dependent kinase 5 (Cdk5), and G-protein-regulated inducer of neurite outgrowth 1 (GPRIN1). Interactions of 5-HT6 receptor with Cdk5 and GPRIN1 are not concomitant but occur sequentially and play a key role in dendritic tree morphogenesis. Furthermore, 5-HT6 receptor-mediated G-protein signaling in neurons is different in the cell body and primary cilium, where it is modulated by smoothened receptor activation. Finally, 5-HT2A receptors form heteromers with mGlu2 metabotropic glutamate receptors. This heteromerization results in a specific phosphorylation of mGlu2 receptor on a serine residue (Ser843) upon agonist stimulation of 5-HT2A or mGlu2 receptor. mGlu2 receptor phosphorylation on Ser843 is an essential step in engagement of Gi/o signaling not only upon mGlu2 receptor activation but also following 5-HT2A receptor activation, and thus represents a key molecular event underlying functional crosstalk between both receptors.

5.
Nat Commun ; 12(1): 3646, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34131137

RESUMO

U5 snRNP is a complex particle essential for RNA splicing. U5 snRNPs undergo intricate biogenesis that ensures that only a fully mature particle assembles into a splicing competent U4/U6•U5 tri-snRNP and enters the splicing reaction. During splicing, U5 snRNP is substantially rearranged and leaves as a U5/PRPF19 post-splicing particle, which requires re-generation before the next round of splicing. Here, we show that a previously uncharacterized protein TSSC4 is a component of U5 snRNP that promotes tri-snRNP formation. We provide evidence that TSSC4 associates with U5 snRNP chaperones, U5 snRNP and the U5/PRPF19 particle. Specifically, TSSC4 interacts with U5-specific proteins PRPF8, EFTUD2 and SNRNP200. We also identified TSSC4 domains critical for the interaction with U5 snRNP and the PRPF19 complex, as well as for TSSC4 function in tri-snRNP assembly. TSSC4 emerges as a specific chaperone that acts in U5 snRNP de novo biogenesis as well as post-splicing recycling.


Assuntos
Ribonucleoproteína Nuclear Pequena U5/química , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Spliceossomos/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo , Enzimas Reparadoras do DNA/metabolismo , Regulação para Baixo , Células HeLa , Humanos , Proteínas Nucleares/metabolismo , Fatores de Alongamento de Peptídeos , Domínios Proteicos , Domínios e Motivos de Interação entre Proteínas , Splicing de RNA , Fatores de Processamento de RNA/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes de Fusão , Ribonucleoproteínas Nucleares Pequenas/química , Fatores de Transcrição , Proteínas Supressoras de Tumor/genética
6.
Nucleic Acids Res ; 49(2): 1094-1113, 2021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33367824

RESUMO

The PAQosome is a large complex composed of the HSP90/R2TP chaperone and a prefoldin-like module. It promotes the biogenesis of cellular machineries but it is unclear how it discriminates closely related client proteins. Among the main PAQosome clients are C/D snoRNPs and in particular their core protein NOP58. Using NOP58 mutants and proteomic experiments, we identify different assembly intermediates and show that C12ORF45, which we rename NOPCHAP1, acts as a bridge between NOP58 and PAQosome. NOPCHAP1 makes direct physical interactions with the CC-NOP domain of NOP58 and domain II of RUVBL1/2 AAA+ ATPases. Interestingly, NOPCHAP1 interaction with RUVBL1/2 is disrupted upon ATP binding. Moreover, while it robustly binds both yeast and human NOP58, it makes little interactions with NOP56 and PRPF31, two other closely related CC-NOP proteins. Expression of NOP58, but not NOP56 or PRPF31, is decreased in NOPCHAP1 KO cells. We propose that NOPCHAP1 is a client-loading PAQosome cofactor that selects NOP58 to promote box C/D snoRNP assembly.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/biossíntese , Trifosfato de Adenosina/metabolismo , Proteínas do Olho/metabolismo , Técnicas de Inativação de Genes , Genes Reporter , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Humanos , Complexos Multiproteicos , Domínios Proteicos , Mapeamento de Interação de Proteínas , Proteômica/métodos , Proteínas Recombinantes de Fusão/metabolismo , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
7.
Mol Psychiatry ; 24(11): 1610-1626, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-29858599

RESUMO

The serotonin 5-HT2A and glutamate mGlu2 receptors continue to attract particular attention, given their implication in psychosis associated with schizophrenia and the mechanism of action of atypical antipsychotics and a new class of antipsychotics, respectively. A large body of evidence indicates a functional crosstalk between both receptors in the brain, but the underlying mechanisms are not entirely elucidated. Here, we have explored the influence of 5-HT2A receptor upon the phosphorylation pattern of mGlu2 receptor in light of the importance of specific phosphorylation events in regulating G protein-coupled receptor signaling and physiological outcomes. Among the five mGlu2 receptor-phosphorylated residues identified in HEK-293 cells, the phosphorylation of Ser843 was enhanced upon mGlu2 receptor stimulation by the orthosteric agonist LY379268 only in cells co-expressing the 5-HT2A receptor. Likewise, administration of LY379268 increased mGlu2 receptor phosphorylation at Ser843 in prefrontal cortex of wild-type mice but not 5-HT2A-/- mice. Exposure of HEK-293 cells co-expressing mGlu2 and 5-HT2A receptors to 5-HT also increased Ser843 phosphorylation state to a magnitude similar to that measured in LY379268-treated cells. In both HEK-293 cells and prefrontal cortex, Ser843 phosphorylation elicited by 5-HT2A receptor stimulation was prevented by the mGlu2 receptor antagonist LY341495, while the LY379268-induced effect was abolished by the 5-HT2A receptor antagonist M100907. Mutation of Ser843 into alanine strongly reduced Gi/o signaling elicited by mGlu2 or 5-HT2A receptor stimulation in cells co-expressing both receptors. Collectively, these findings identify mGlu2 receptor phosphorylation at Ser843 as a key molecular event that underlies the functional crosstalk between both receptors.


Assuntos
Receptor 5-HT2A de Serotonina/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Serotonina/farmacologia , Aminoácidos/farmacologia , Animais , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Células HEK293 , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Córtex Pré-Frontal/metabolismo , Receptor 5-HT2A de Serotonina/fisiologia , Receptores de Glutamato Metabotrópico/fisiologia , Serina , Transdução de Sinais/efeitos dos fármacos
8.
Structure ; 26(9): 1196-1209.e8, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30033218

RESUMO

RPAP3 and PIH1D1 are part of the HSP90 co-chaperone R2TP complex involved in the assembly process of many molecular machines. In this study, we performed a deep structural investigation of the HSP binding abilities of the two TPR domains of RPAP3. We combined 3D NMR, non-denaturing MS, and ITC techniques with Y2H, IP-LUMIER, FRET, and ATPase activity assays and explain the fundamental role played by the second TPR domain of RPAP3 in the specific recruitment of HSP90. We also established the 3D structure of an RPAP3:PIH1D1 sub-complex demonstrating the need for a 34-residue insertion, specific of RPAP3 isoform 1, for the tight binding of PIH1D1. We also confirm the existence of a complex lacking PIH1D1 in human cells (R2T), which shows differential binding to certain clients. These results highlight similarities and differences between the yeast and human R2TP complexes, and document the diversification of this family of co-chaperone complexes in human.


Assuntos
Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Sítios de Ligação , Linhagem Celular , Proteínas de Choque Térmico HSP72/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Multimerização Proteica
9.
Nat Commun ; 9(1): 2093, 2018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29844425

RESUMO

R2TP is an HSP90 co-chaperone that assembles important macro-molecular machineries. It is composed of an RPAP3-PIH1D1 heterodimer, which binds the two essential AAA+ATPases RUVBL1/RUVBL2. Here, we resolve the structure of the conserved C-terminal domain of RPAP3, and we show that it directly binds RUVBL1/RUVBL2 hexamers. The human genome encodes two other proteins bearing RPAP3-C-terminal-like domains and three containing PIH-like domains. Systematic interaction analyses show that one RPAP3-like protein, SPAG1, binds PIH1D2 and RUVBL1/2 to form an R2TP-like complex termed R2SP. This co-chaperone is enriched in testis and among 68 of the potential clients identified, some are expressed in testis and others are ubiquitous. One substrate is liprin-α2, which organizes large signaling complexes. Remarkably, R2SP is required for liprin-α2 expression and for the assembly of liprin-α2 complexes, indicating that R2SP functions in quaternary protein folding. Effects are stronger at 32 °C, suggesting that R2SP could help compensating the lower temperate of testis.


Assuntos
ATPases Associadas a Diversas Atividades Celulares/metabolismo , Proteínas Reguladoras de Apoptose/metabolismo , Proteínas de Transporte/metabolismo , DNA Helicases/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/metabolismo , Testículo/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Antígenos de Superfície/metabolismo , Proteínas Reguladoras de Apoptose/genética , Proteínas de Transporte/genética , Linhagem Celular , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Células HeLa , Humanos , Masculino , Proteínas de Membrana/metabolismo , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Transdução de Sinais
10.
J Cell Biol ; 216(6): 1579-1596, 2017 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-28515276

RESUMO

Splicing is catalyzed by the spliceosome, a complex of five major small nuclear ribonucleoprotein particles (snRNPs). The pre-mRNA splicing factor PRPF8 is a crucial component of the U5 snRNP, and together with EFTUD2 and SNRNP200, it forms a central module of the spliceosome. Using quantitative proteomics, we identified assembly intermediates containing PRPF8, EFTUD2, and SNRNP200 in association with the HSP90/R2TP complex, its ZNHIT2 cofactor, and additional proteins. HSP90 and R2TP bind unassembled U5 proteins in the cytoplasm, stabilize them, and promote the formation of the U5 snRNP. We further found that PRPF8 mutants causing Retinitis pigmentosa assemble less efficiently with the U5 snRNP and bind more strongly to R2TP, with one mutant retained in the cytoplasm in an R2TP-dependent manner. We propose that the HSP90/R2TP chaperone system promotes the assembly of a key module of U5 snRNP while assuring the quality control of PRPF8. The proteomics data further reveal new interactions between R2TP and the tuberous sclerosis complex (TSC), pointing to a potential link between growth signals and the assembly of key cellular machines.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Precursores de RNA/metabolismo , Splicing de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteína Nuclear Pequena U5/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Células HeLa , Humanos , Complexos Multiproteicos , Mutação , Fatores de Alongamento de Peptídeos/genética , Fatores de Alongamento de Peptídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Proteômica/métodos , Interferência de RNA , Precursores de RNA/genética , RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Retinite Pigmentosa/genética , Retinite Pigmentosa/metabolismo , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Ribonucleoproteína Nuclear Pequena U4-U6/metabolismo , Ribonucleoproteína Nuclear Pequena U5/genética , Transfecção
11.
Elife ; 62017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28169830

RESUMO

In addition to their role in desensitization and internalization of G protein-coupled receptors (GPCRs), ß-arrestins are essential scaffolds linking GPCRs to Erk1/2 signaling. However, their role in GPCR-operated Erk1/2 activation differs between GPCRs and the underlying mechanism remains poorly characterized. Here, we show that activation of serotonin 5-HT2C receptors, which engage Erk1/2 pathway via a ß-arrestin-dependent mechanism, promotes MEK-dependent ß-arrestin2 phosphorylation at Thr383, a necessary step for Erk recruitment to the receptor/ß-arrestin complex and Erk activation. Likewise, Thr383 phosphorylation is involved in ß-arrestin-dependent Erk1/2 stimulation elicited by other GPCRs such as ß2-adrenergic, FSH and CXCR4 receptors, but does not affect the ß-arrestin-independent Erk1/2 activation by 5-HT4 receptor. Collectively, these data show that ß-arrestin2 phosphorylation at Thr383 underlies ß-arrestin-dependent Erk1/2 activation by GPCRs.


Assuntos
Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Processamento de Proteína Pós-Traducional , Receptores Acoplados a Proteínas G/metabolismo , beta-Arrestina 2/metabolismo , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases , Fosforilação , Receptores de Serotonina/metabolismo
12.
Biochem J ; 474(6): 983-1001, 2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28008135

RESUMO

Activation of AMP-activated protein kinase (AMPK) in endothelial cells regulates energy homeostasis, stress protection and angiogenesis, but the underlying mechanisms are incompletely understood. Using a label-free phosphoproteomic analysis, we identified glutamine:fructose-6-phosphate amidotransferase 1 (GFAT1) as an AMPK substrate. GFAT1 is the rate-limiting enzyme in the hexosamine biosynthesis pathway (HBP) and as such controls the modification of proteins by O-linked ß-N-acetylglucosamine (O-GlcNAc). In the present study, we tested the hypothesis that AMPK controls O-GlcNAc levels and function of endothelial cells via GFAT1 phosphorylation using biochemical, pharmacological, genetic and in vitro angiogenesis approaches. Activation of AMPK in primary human endothelial cells by 5-aminoimidazole-4-carboxamide riboside (AICAR) or by vascular endothelial growth factor (VEGF) led to GFAT1 phosphorylation at serine 243. This effect was not seen when AMPK was down-regulated by siRNA. Upon AMPK activation, diminished GFAT activity and reduced O-GlcNAc levels were observed in endothelial cells containing wild-type (WT)-GFAT1 but not in cells expressing non-phosphorylatable S243A-GFAT1. Pharmacological inhibition or siRNA-mediated down-regulation of GFAT1 potentiated VEGF-induced sprouting, indicating that GFAT1 acts as a negative regulator of angiogenesis. In cells expressing S243A-GFAT1, VEGF-induced sprouting was reduced, suggesting that VEGF relieves the inhibitory action of GFAT1/HBP on angiogenesis via AMPK-mediated GFAT1 phosphorylation. Activation of GFAT1/HBP by high glucose led to impairment of vascular sprouting, whereas GFAT1 inhibition improved sprouting even if glucose level was high. Our findings provide novel mechanistic insights into the role of HBP in angiogenesis. They suggest that targeting AMPK in endothelium might help to ameliorate hyperglycaemia-induced vascular dysfunction associated with metabolic disorders.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Acetilglucosamina/metabolismo , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Processamento de Proteína Pós-Traducional , Fator A de Crescimento do Endotélio Vascular/farmacologia , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Alanina/química , Alanina/metabolismo , Substituição de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/farmacologia , Animais , Fibroblastos/citologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Glucose/farmacologia , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/antagonistas & inibidores , Glutamina-Frutose-6-Fosfato Transaminase (Isomerizante)/genética , Hexosaminas/biossíntese , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Camundongos , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ribonucleotídeos/farmacologia , Serina/química , Serina/metabolismo
13.
Biochem J ; 473(13): 1953-65, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27143784

RESUMO

The activity of serotonergic systems depends on the reuptake of extracellular serotonin via its plasma membrane serotonin [5-HT (5-hydroxytryptamine)] transporter (SERT), a member of the Na(+)/Cl(-)-dependent solute carrier 6 family. SERT is finely regulated by multiple molecular mechanisms including its physical interaction with intracellular proteins. The majority of previously identified SERT partners that control its functional activity are soluble proteins, which bind to its intracellular domains. SERT also interacts with transmembrane proteins, but its association with other plasma membrane transporters remains to be established. Using a proteomics strategy, we show that SERT associates with ASCT2 (alanine-serine-cysteine-threonine 2), a member of the solute carrier 1 family co-expressed with SERT in serotonergic neurons and involved in the transport of small neutral amino acids across the plasma membrane. Co-expression of ASCT2 with SERT in HEK (human embryonic kidney)-293 cells affects glycosylation and cell-surface localization of SERT with a concomitant reduction in its 5-HT uptake activity. Conversely, depletion of cellular ASCT2 by RNAi enhances 5-HT uptake in both HEK-293 cells and primary cultured mesencephalon neurons. Mimicking the effect of ASCT2 down-regulation, treatment of HEK-293 cells and neurons with the ASCT2 inhibitor D-threonine also increases 5-HT uptake. Moreover, D-threonine does not enhance further the maximal velocity of 5-HT uptake in cells depleted of ASCT2. Collectively, these findings provide evidence for a complex assembly involving SERT and a member of another solute carrier family, which strongly influences the subcellular distribution of SERT and the reuptake of 5-HT.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/metabolismo , Sistema ASC de Transporte de Aminoácidos/antagonistas & inibidores , Sistema ASC de Transporte de Aminoácidos/genética , Animais , Transporte Biológico/efeitos dos fármacos , Transporte Biológico/genética , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Camundongos , Antígenos de Histocompatibilidade Menor/genética , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ligação Proteica , Interferência de RNA , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética , Treonina/farmacologia
14.
Proc Natl Acad Sci U S A ; 112(44): 13705-10, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26483470

RESUMO

Phosphorylation is a major mechanism regulating the activity of ion channels that remains poorly understood with respect to T-type calcium channels (Cav3). These channels are low voltage-activated calcium channels that play a key role in cellular excitability and various physiological functions. Their dysfunction has been linked to several neurological disorders, including absence epilepsy and neuropathic pain. Recent studies have revealed that T-type channels are modulated by a variety of serine/threonine protein kinase pathways, which indicates the need for a systematic analysis of T-type channel phosphorylation. Here, we immunopurified Cav3.2 channels from rat brain, and we used high-resolution MS to construct the first, to our knowledge, in vivo phosphorylation map of a voltage-gated calcium channel in a mammalian brain. We identified as many as 34 phosphorylation sites, and we show that the vast majority of these sites are also phosphorylated on the human Cav3.2 expressed in HEK293T cells. In patch-clamp studies, treatment of the channel with alkaline phosphatase as well as analysis of dephosphomimetic mutants revealed that phosphorylation regulates important functional properties of Cav3.2 channels, including voltage-dependent activation and inactivation and kinetics. We also identified that the phosphorylation of a locus situated in the loop I-II S442/S445/T446 is crucial for this regulation. Our data show that Cav3.2 channels are highly phosphorylated in the mammalian brain and establish phosphorylation as an important mechanism involved in the dynamic regulation of Cav3.2 channel gating properties.


Assuntos
Canais de Cálcio Tipo T/metabolismo , Ativação do Canal Iônico , Canais de Cálcio Tipo T/fisiologia , Células HEK293 , Humanos , Técnicas de Patch-Clamp , Fosforilação
15.
Mol Biol Cell ; 26(18): 3245-62, 2015 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-26179915

RESUMO

In many cell types, septins assemble into filaments and rings at the neck of cellular appendages and/or at the cleavage furrow to help compartmentalize the plasma membrane and support cytokinesis. How septin ring assembly is coordinated with membrane remodeling and controlled by mechanical stress at these sites is unclear. Through a genetic screen, we uncovered an unanticipated link between the conserved Rho1 GTPase and its effector protein kinase C (Pkc1) with septin ring stability in yeast. Both Rho1 and Pkc1 stabilize the septin ring, at least partly through phosphorylation of the membrane-associated F-BAR protein Syp1, which colocalizes asymmetrically with the septin ring at the bud neck. Syp1 is displaced from the bud neck upon Pkc1-dependent phosphorylation at two serines, thereby affecting the rigidity of the new-forming septin ring. We propose that Rho1 and Pkc1 coordinate septin ring assembly with membrane and cell wall remodeling partly by controlling Syp1 residence at the bud neck.


Assuntos
Proteínas de Transporte/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Septinas/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Proteínas de Transporte/genética , Citocinese/fisiologia , Citoesqueleto/metabolismo , Regulação Fúngica da Expressão Gênica , Fosforilação , Proteína Quinase C/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Septinas/genética , Transdução de Sinais , Proteínas rho de Ligação ao GTP/genética
16.
J Cell Biol ; 207(4): 463-80, 2014 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-25404746

RESUMO

In vitro, assembly of box C/D small nucleolar ribonucleoproteins (snoRNPs) involves the sequential recruitment of core proteins to snoRNAs. In vivo, however, assembly factors are required (NUFIP, BCD1, and the HSP90-R2TP complex), and it is unknown whether a similar sequential scheme applies. In this paper, we describe systematic quantitative stable isotope labeling by amino acids in cell culture proteomic experiments and the crystal structure of the core protein Snu13p/15.5K bound to a fragment of the assembly factor Rsa1p/NUFIP. This revealed several unexpected features: (a) the existence of a protein-only pre-snoRNP complex containing five assembly factors and two core proteins, 15.5K and Nop58; (b) the characterization of ZNHIT3, which is present in the protein-only complex but gets released upon binding to C/D snoRNAs; (c) the dynamics of the R2TP complex, which appears to load/unload RuvBL AAA(+) adenosine triphosphatase from pre-snoRNPs; and (d) a potential mechanism for preventing premature activation of snoRNP catalytic activity. These data provide a framework for understanding the assembly of box C/D snoRNPs.


Assuntos
Proteínas Nucleares/química , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleolares Pequenas/metabolismo , ATPases Associadas a Diversas Atividades Celulares , Sequência de Aminoácidos , Sítios de Ligação , Proteínas de Transporte/metabolismo , Linhagem Celular Tumoral , Cristalografia por Raios X , DNA Helicases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Células HEK293 , Proteínas de Choque Térmico HSP90/metabolismo , Células HeLa , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fator 6 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/metabolismo , Ligação Proteica , Proteômica/métodos , Proteínas Proto-Oncogênicas/metabolismo , Proteínas de Ligação a RNA/metabolismo , Ribonucleases/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Saccharomyces cerevisiae/genética , Alinhamento de Sequência , Fatores de Transcrição
17.
Mol Cell Proteomics ; 13(5): 1273-85, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24637012

RESUMO

The serotonin 5-HT(2A) receptor is a primary target of psychedelic hallucinogens such as lysergic acid diethylamine, mescaline, and psilocybin, which reproduce some of the core symptoms of schizophrenia. An incompletely resolved paradox is that only some 5-HT(2A) receptor agonists exhibit hallucinogenic activity, whereas structurally related agonists with comparable affinity and activity lack such a psychoactive activity. Using a strategy combining stable isotope labeling by amino acids in cell culture with enrichment in phosphorylated peptides by means of hydrophilic interaction liquid chromatography followed by immobilized metal affinity chromatography, we compared the phosphoproteome in HEK-293 cells transiently expressing the 5-HT(2A) receptor and exposed to either vehicle or the synthetic hallucinogen 1-[2,5-dimethoxy-4-iodophenyl]-2-aminopropane (DOI) or the nonhallucinogenic 5-HT(2A) agonist lisuride. Among the 5995 identified phosphorylated peptides, 16 sites were differentially phosphorylated upon exposure of cells to DOI versus lisuride. These include a serine (Ser(280)) located in the third intracellular loop of the 5-HT(2A) receptor, a region important for its desensitization. The specific phosphorylation of Ser(280) by hallucinogens was further validated by quantitative mass spectrometry analysis of immunopurified receptor digests and by Western blotting using a phosphosite specific antibody. The administration of DOI, but not of lisuride, to mice, enhanced the phosphorylation of 5-HT(2A) receptors at Ser(280) in the prefrontal cortex. Moreover, hallucinogens induced a less pronounced desensitization of receptor-operated signaling in HEK-293 cells and neurons than did nonhallucinogenic agonists. The mutation of Ser(280) to aspartic acid (to mimic phosphorylation) reduced receptor desensitization by nonhallucinogenic agonists, whereas its mutation to alanine increased the ability of hallucinogens to desensitize the receptor. This study reveals a biased phosphorylation of the 5-HT(2A) receptor in response to hallucinogenic versus nonhallucinogenic agonists, which underlies their distinct capacity to desensitize the receptor.


Assuntos
Anfetaminas/farmacologia , Alucinógenos/farmacologia , Lisurida/farmacologia , Receptor 5-HT2A de Serotonina/metabolismo , Serina/metabolismo , Agonistas do Receptor 5-HT2 de Serotonina/farmacologia , Animais , Células Cultivadas , Regulação da Expressão Gênica/efeitos dos fármacos , Células HEK293 , Humanos , Camundongos , Neurônios/metabolismo , Fosforilação , Córtex Pré-Frontal/metabolismo , Proteômica/métodos , Transdução de Sinais/efeitos dos fármacos
18.
Nat Struct Mol Biol ; 20(12): 1358-66, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24270878

RESUMO

The nuclear cap-binding complex (CBC) stimulates multiple steps in several RNA maturation pathways, but how it functions in humans is incompletely understood. For small, capped RNAs such as pre-snRNAs, the CBC recruits PHAX. Here, we identify the CBCAP complex, composed of CBC, ARS2 and PHAX, and show that both CBCAP and CBC-ARS2 complexes can be reconstituted from recombinant proteins. ARS2 stimulates PHAX binding to the CBC and snRNA 3'-end processing, thereby coupling maturation with export. In vivo, CBC and ARS2 bind similar capped noncoding and coding RNAs and stimulate their 3'-end processing. The strongest effects are for cap-proximal polyadenylation sites, and this favors premature transcription termination. ARS2 functions partly through the mRNA 3'-end cleavage factor CLP1, which binds RNA Polymerase II through PCF11. ARS2 is thus a major CBC effector that stimulates functional and cryptic 3'-end processing sites.


Assuntos
Modelos Genéticos , Complexo Proteico Nuclear de Ligação ao Cap/fisiologia , Proteínas Nucleares/fisiologia , Proteínas de Transporte Nucleocitoplasmático/fisiologia , Fosfoproteínas/fisiologia , Processamento de Terminações 3' de RNA , Células HeLa , Humanos , Complexo Proteico Nuclear de Ligação ao Cap/química , Complexo Proteico Nuclear de Ligação ao Cap/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Poli A/química , Poli A/metabolismo
19.
J Neurosci ; 33(41): 16189-99, 2013 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-24107951

RESUMO

Homeostasis of serotonergic transmission critically depends on the rate of serotonin reuptake via its plasma membrane transporter (SERT). SERT activity is tightly regulated by multiple mechanisms, including physical association with intracellular proteins and post-translational modifications, such as phosphorylation, but these mechanisms remain partially understood. Here, we show that SERT C-terminal domain recruits both the catalytic and regulatory subunits of the Ca(2+)-activated protein phosphatase calcineurin (CaN) and that the physical association of SERT with CaN is promoted by CaN activity. Coexpression of constitutively active CaN with SERT increases SERT cell surface expression and 5-HT uptake in HEK-293 cells. It also prevents the reduction of 5-HT uptake induced by an acute treatment of cells with the protein kinase C activator ß-PMA and concomitantly decreases PMA-elicited SERT phosphorylation. In addition, constitutive activation of CaN in vivo favors 5-HT uptake in the adult mouse brain, whereas CaN inhibition reduces cerebral 5-HT uptake. Constitutive activation of CaN also decreases immobility in the forced swim test, indicative of an antidepressant-like effect of CaN. These results identify CaN as an important regulator of SERT activity in the adult brain and provide a novel molecular substrate of clinical interest for the understanding of increased risk of mood disorders in transplanted patients treated with immunosuppressive CaN inhibitors.


Assuntos
Calcineurina/metabolismo , Neurônios/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Serotonina/metabolismo , Transmissão Sináptica/fisiologia , Animais , Western Blotting , Calcineurina/química , Membrana Celular/metabolismo , Células HEK293 , Humanos , Imunoprecipitação , Espectrometria de Massas , Camundongos , Camundongos Transgênicos , Ligação Proteica , Proteínas da Membrana Plasmática de Transporte de Serotonina/química
20.
Bioinformatics ; 26(17): 2153-9, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20651112

RESUMO

MOTIVATION: Complex patterns of protein phosphorylation mediate many cellular processes. Tandem mass spectrometry (MS/MS) is a powerful tool for identifying these post-translational modifications. In high-throughput experiments, mass spectrometry database search engines, such as MASCOT provide a ranked list of peptide identifications based on hundreds of thousands of MS/MS spectra obtained in a mass spectrometry experiment. These search results are not in themselves sufficient for confident assignment of phosphorylation sites as identification of characteristic mass differences requires time-consuming manual assessment of the spectra by an experienced analyst. The time required for manual assessment has previously rendered high-throughput confident assignment of phosphorylation sites challenging. RESULTS: We have developed a knowledge base of criteria, which replicate expert assessment, allowing more than half of cases to be automatically validated and site assignments verified with a high degree of confidence. This was assessed by comparing automated spectral interpretation with careful manual examination of the assignments for 501 peptides above the 1% false discovery rate (FDR) threshold corresponding to 259 putative phosphorylation sites in 74 proteins of the Trypanosoma brucei proteome. Despite this stringent approach, we are able to validate 80 of the 91 phosphorylation sites (88%) positively identified by manual examination of the spectra used for the MASCOT searches with a FDR < 15%. CONCLUSIONS: High-throughput computational analysis can provide a viable second stage validation of primary mass spectrometry database search results. Such validation gives rapid access to a systems level overview of protein phosphorylation in the experiment under investigation. AVAILABILITY: A GPL licensed software implementation in Perl for analysis and spectrum annotation is available in the supplementary material and a web server can be assessed online at http://www.compbio.dundee.ac.uk/prophossi.


Assuntos
Fosfopeptídeos/análise , Processamento de Proteína Pós-Traducional , Espectrometria de Massas em Tandem/métodos , Algoritmos , Automação , Bases de Dados Factuais , Fosforilação , Software , Trypanosoma brucei brucei/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...